
MC Squared
a musical experience

!

Introduction to Physical Computing

fall 2008

Diego Rioja

Filippo Vanucci

India Amos

http://itp.nyu.edu/~dr1247/diagonalpeople/
http://itp.nyu.edu/~fv326/blog/
http://itp.nyu.edu/~ia303/thunk/

MC Squared . . .
°	is	a	musical	instrument	that	detects	motion	and	generates	sounds	from	each	side

°	can	be	played	by	one	or	more	than	one	person
°	can	be	played	with	any	part	of	the	body,	or	an	object
°	is	simple,	intuitive,	playful,	expressive

What People are Saying

about MC Squared
°	“Sexy!”
°	“This	is	so	fun!”
°	“Awesome!”

USer Profile
°		Humans,	age	7	and	up.	Cats,	age	6	weeks	and	up.
°		Musicians	and	nonmusicians.
°	People	who	have	phobias	about	touching	things.

A	cat	playing	a	theremin—one	of	many	such	talented	
felines.

http://www.youtube.com/watch?v=0ONJfp95yoE
http://www.youtube.com/watch?v=0ONJfp95yoE
http://www.youtube.com/results?search_query=cat+theremin

Inspiration
°	Experimenting	with	new	ways	of	playing,	new	interactions	for	music	performances.

°	The	theremin,	an	unusual,	hands-off	device	for	music	composition.
°	The	Groovebox	(aka	the	Roland	MC-505),	a	drum	machine	that	incorporates	a	motion	sensor	as	one	of	its	many	controls.

°	Somewhat	anachronistically,	Murat	Konar’s	loopqoob,	which	Diego	discovered	during	our	observation	and	research	phase.

http://en.wikipedia.org/wiki/Theremin
http://en.wikipedia.org/wiki/Roland_MC-505
http://www.muratnkonar.com/id/loopqoob/video-conceptdemo.shtml

Filippo	showed	a	video	clip	of	Jon	Spencer	playing	a	theremin.	
It’s	pretty	fine.

http://www.youtube.com/watch?v=vyF_UN8g9f0

Diego	set	up	his	Groovebox	in	the	ITP	lobby,	and	we	observed	several	people	using	it.	This	device	was	one	of	the	inspirations	
behind	our	project.	I	has	a	motion	sensor	at	the	top,	just	to	the	left	of	the	numbers,	which	generates	wacky	thereminic	sounds.

videos: Groovebox observation

c l i c k i m a g e t o p l ay c l i c k i m a g e t o p l ay

how MC Squared works
°		Each	side	is	embedded	with	an	infrared	sensor	that	detects	movements	within	a	range	of	about	2	to	12	inches	in	front	of	it.

°		Signals	from	each	sensor	trigger	a	different	sound,	using	the	Minim	library	in	Processing.

Diego	and	FIlippo	play	our	first	prototype.	This	two-sensor	model	
played	sounds	continuously,	as	long	as	an	object	was	in	range	of	the	
sensors.	Nearer	objects	generated	one	sound	from	each	sensor;	farther	
objects,	another,	for	a	total	of	four	sounds.	The	code	is	on	India’s	blog.

video: Initial version

c l i c k i m a g e t o p l ay

http://itp.nyu.edu/~ia303/thunk/2008/10/15/midterm-project-week-2-rough-prototype/

Diego	plays	a	version	with	more	sensors	and	revised	code.

video: An intermediate version

c l i c k i m a g e t o p l ay

video: The penultimate (?) version

Carolina	Vallejo,	Sara	Bremen,	Eyal	Ohana,	Filippo,	and	
Diego	trying	out	the	newest	version	on	Tuesday	evening.	
This	model	sports	a	new,	larger		foam	box	and	plays	each	
sound	clip	only	once	for	each	(contact-free)	hit.

c l i c k i m a g e t o p l ay

http://www.carolinavallejo.com/itp/
http://itp.nyu.edu/~sgb264/wordpress_blog/
http://itp.nyu.edu/blogs/eo527/

/**
 * This sketch demon-
strates how to use the
<code>play</code> method of a
<code>Playable</code> class.
 * The class used here is
<code>AudioPlayer</code>,
but you can also play an
<code>AudioSnippet</code>.
 * Playing a
<code>Playable</code> causes
it to begin playing from the
current position. When it
reaches
 * the end of the recording
it will emit silence, it will
not stop! In other words, if
you play something and
 * it gets to the end of the
file, it will not stop and
rewind, it will continue to
try to read the file, but get
 * nothing and send silence
to the audio system. If you
call <code>isPlaying()</code>
at that point, it will return
true,
 * because the player is
still trying to read the file,
think of a record player that
gets to the end of a record.
 * It just goes around on
the same groove. It’s not
making any sound (well,
crackles maybe) but it is
still playing.
 * Press ‘p’ to play the
file.
 *
 */

import processing.serial.*;
import ddf.minim.*;
Serial myPort;
Minim minim;
AudioSample sample1;
AudioSample sample2;
AudioSample sample3;
AudioSample sample4;
AudioSample sample5;
AudioSample sample6;
int[] sensors;
int[] preVal = new int[6];
//int val=0;
int[] val = new int[6];
void setup(){

 size(512, 200, P3D);
 for(int i=0; i < 6; i++){
 preVal[i]=0;
 val[i]=0;
 }
 minim = new Minim(this);
 sample1 = minim.loadSample(
“kick01.wav”, 2048);
 if (sample1 == null) {
 println(“Didn’t get
kick!”);
 }
 minim = new Minim(this);
 sample2 = minim.loadSample(
“snare.wav”, 2048);
 if (sample2 == null) {
 println(“Didn’t get
kick!”);
 }
 minim = new Minim(this);
 sample3 = minim.loadSample(
“snare2.wav”, 2048);
 if (sample3 == null) {
 println(“Didn’t get
kick!”);
 }
 minim = new Minim(this);
 sample4 = minim.loadSample(
“loop2.wav”, 2048);
 if (sample4 == null) {
 println(“Didn’t get
kick!”);
 }
 minim = new Minim(this);
 sample5 = minim.loadSample(
“hihat.wav”, 2048);
 if (sample5 == null) {
 println(“Didn’t get
kick!”);
 }
 minim = new Minim(this);
 sample6 = minim.loadSample(
“loop1.wav”, 2048);
 if (sample6 == null) {
 println(“Didn’t get
kick!”);
 }
 /* List all the available
serial ports. Don’t really
need to do this, since
 it’s always zero for me,
but it doesn’t hurt.
 */
 println(Serial.list());
 // If I wanted a port

other than zero, its number
would go in the brackets.
 myPort = new Serial(this,
Serial.list()[2], 9600);
 // Read bytes into a buf-
fer until you get a line
feed.
 myPort.bufferUntil(‘\n’);
}
void draw()
{
 background(0);

//println(preVal+” “+val);
//println(val);
 if (val[0]==1 && pre-
Val[0]==0){
 println(“DSAD”);
 soundSample1();
 }
 if (val[1]==1 && pre-
Val[1]==0){
 println(“BAM”);
 soundSample2();
 }
 if (val[2]==1 && pre-
Val[2]==0){
 println(“BAM”);
 soundSample3();
 }
 if (val[3]==1 && pre-
Val[3]==0){
 println(“BAM”);
 soundSample4();
 }
 if (val[4]==1 && pre-
Val[4]==0){
 println(“BAM”);
 soundSample5();
 }

 if (val[5]==1 && pre-
Val[5]==0){
 println(“BAM”);
 soundSample6();
 }
 preVal[0]=val[0];
 preVal[1]=val[1];
 preVal[2]=val[2];
 preVal[3]=val[3];
 preVal[4]=val[4];
 preVal[5]=val[5];
}
void serialEvent(Serial
myPort)
{

 // Read the serial buffer.
 String bufferedString =
myPort.readStringUntil(‘\n’
);
 // If you got any bytes
other than the line feed:
 if (bufferedString != null
)
 {
 bufferedString = trim(
bufferedString);
 /* Split the string at
the tab(s) and convert the
sections into integers.
 Each section represents
one of the sensors.
 */
 sensors = int(split(
bufferedString, ‘\t’));

 /* println(sensors[0]);
 println(sensors[1]);
 println(sensors[2]);
 println(sensors[3]);
 println(sensors[4]);
 println(sensors[5]);*/
 if (sensors[0] > 350){
 val[0] = 1;
 } else {
 val[0] = 0;
 }
 if (sensors[1] > 350){

 val[1] = 1;
 } else {
 val[1] = 0;
 }
 if (sensors[2] > 350){
 val[2] = 1;
 } else {
 val[2] = 0;
 }
 if (sensors[3] > 350){
 val[3] = 1;
 } else {
 val[3] = 0;
 }
 if (sensors[4] > 350){
 val[4] = 1;
 } else {
 val[4] = 0;
 }
 if (sensors[5] > 350){
 val[5] = 1;
 } else {
 val[5] = 0;

 }
//preVal=val;
//preVal=val;
//val=sensors[0];
//println(val);
 // Loop through to read
data from each sensor.
 for (int sensorNum = 0;
sensorNum < sensors.length;
sensorNum++)
 {
 /* Print out the val-
ues received from the sensors
(whose number was
 determined by the num-
ber of tabbed sections.
 */
 // print(“Sen-
sor “ + sensorNum + “: “ +
sensors[sensorNum] + “\t\t”
);
 }

}
}
void soundSample1(){
 sample1.trigger();
}

void soundSample2(){
 sample2.trigger();
}
void soundSample3(){
 sample3.trigger();
}
void soundSample4(){
 sample4.trigger();
}
void soundSample5(){
 sample5.trigger();
}
void soundSample6(){
 sample6.trigger();
}

void stop()
{
 // always close Minim audio
classes when you are done
with them
 sample1.close();
 sample2.close();
 sample3.close();
 sample4.close();
 sample5.close();
 sample6.close();

code
°		Processing:	mc_squared_processing_code.zip	(957KB)

°	�Arduino:	mc_squared_arduino_code.zip	(64 KB)

http://itp.nyu.edu/~ia303/PhysComp/midterm/mc_squared_processing_code.zip
http://itp.nyu.edu/~ia303/PhysComp/midterm/mc_squared_arduino_code.zip

design decisions
°		Each	side	has	a	different	icon	and	color,	to	aid	the	players	in	associating	each	side	with	a	specific	sound.

°		Each	side	uses	the	same	kind	of	sensor,	having	the	same	range,	to	make	the	interaction	with	MC Squared	predictable	and	intuitive.

°		Each	sensor	functions	as	a	digital	switch	rather	than	a	variable	control,	to	make	it	simple	to	operate.

Diego	demonstrating	how	the	MC Squared	(here		
represented	by	an	iPod	box)	stands	on	its	corner	so	that	
players	can	reach	all	sides.

Our	first	box,	made	of	black	foam	core,	held	together	with	black	fabric	tape,	Velcro	squares	(so	the	whole	box	can	
be	opened	out	flat	for	servicing),	and	a	wire	latch.	This	box	measures	6	inches	on	each	side,	which	turned	out	to	be	
an	extremely	tight	fit	for	an	Arduino	Diecimila	and	a	small	breadboard.

The	final	box	was	constructed	from	sheets	of	7/8-inch	
urethane	foam	which	we	cut	on	a	band	saw	to	8-inch	
squares.		Six	of	these	squares	have	the	centers	cut	
out.	The	whole	stack—except	for	the	lid—was	glued	
together	by	Diego,	aka	The	Human	Clamp.

Diego	learned	that	spraypainting	the	foam	would	
cause	it	to	break	down,	and	we	didn’t	have	time	
to	wait	for	paint	to	dry,	anyway.	So	we	covered	
the	sides	with	printed	paper,	which	is	secured	

with	a	ton	of	black	fabric	tape.	It’s	loose	around	
the	sensors;	a	dab	of	glue	would	have	helped.

One	view	of	the	box	we	used	in	our	
presentation.

A	corner	of	the	box	gets	wedged	into	this	
block	so	that	players	can	reach	all	sides.	The	
block	can	be	mounted	on	a	platform	(what	we	
did)	or	tripod.

One	view	of	the	box	we	used	in	our	
presentation.

A	corner	of	the	box	gets	wedged	into	this	
block	so	that	players	can	reach	all	sides.	The	
block	can	be	mounted	on	a	platform	(what	we	
did)	or	tripod.

Future Possibilities
°	MC Squared	could	be	installed	in	public	places,	to	get	people	
involved	in	playful	interactions	in	unexpected	environments	(e.g.,	
airports,	train	stations).

°	MC Squared		could	come	with	alternate	sound	packs—electronica,	
stringed	instruments,	etc.

°	Buttons	and	a	mic	could	be	added	so	that	users	could	record	new	sound	loops	on	the	fly.

Thanks	to	all	who	helped	play,	helped	code,	lent	us	header	pins,		
showed	us	how	to	unlock	the	band	saw	blade,	and	much,	much	more.		

And	special	thanks	to	Yasser	Ansari,	who	suggested	the	name

MC Squared

!

